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Abstract

A lattice QCD calculation of the �B ! Dl�� decay form factors is presented.
We obtain the value of the form factor h+(w) at the zero-recoil limit w = 1
with high precision by considering a ratio of correlation functions in which
the bulk of the uncertainties cancels. The other form factor h�(w) is cal-
culated, for small recoil momenta, from a similar ratio. In both cases, the
heavy quark mass dependence is observed through direct calculations with
several combinations of initial and �nal heavy quark masses. Our results
are h+(1) = 1:007(6)(2)(3) and h�(1) = �0:107(28)(04)(1030). For both the
�rst error is statistical, the second stems from the uncertainty in adjusting
the heavy quark masses, and the last from omitted radiative corrections.
Combining these results, we obtain a precise determination of the physical
combination FB!D(1) = 1:058(2017), where the mentioned systematic errors
are added in quadrature. The dependence on lattice spacing and the e�ect
of quenching are not yet included, but with our method they should be a
fraction of FB!D � 1.



1 Introduction

The precise determination of the Cabbibo-Kobayashi-Maskawa (CKM) ma-
trix element Vcb is a crucial step for B physics to pursue phenomena beyond
the Standard Model. In particular, the precision achieved in determining
the apex of the unitarity triangle may be limited by jVcbj, even with future
high-statistics experiments. The current determination of jVcbj [1] is made
through inclusive [2,3] and exclusive [4,5] B decays.

The heavy quark expansion o�ers a method to evaluate the hadronic
transition amplitude in a systematic way. In particular, at the kinematic end
point the exclusive �B ! D� matrix element is normalized in the in�nite heavy
quark mass limit, and the correction of order 1=mQ vanishes as a consequence
of Luke's theorem [6]. It is, thus, possible to achieve an accuracy on jVcbj
of a few per cent. Calculations of the 1=m2

Q (and higher order) deviations
from the heavy quark limit have previously been attempted with the non-
relativistic quark model and with QCD sum rules.

Lattice QCD has the potential to calculate exclusive transition matrix
elements from �rst principles. The shapes of the �B ! D(�)l�� decay form
factors have already been calculated successfully with propagating [7{9],
static [10{13], and non-relativistic [14] heavy quarks. On the other hand,
a precise determination of the absolute normalization of the form factors has
not been achieved. This paper �lls that gap for the decay B ! Dl�.

Previous lattice calculations were unable to obtain the normalization of
the form factors for various reasons. First, the statistical precision of the
three point function hDV�Byi, which is calculated by Monte Carlo integra-
tion, has not been enough. Second, perturbative matching between the lattice
and the continuum currents has been a large source of uncertainty. Since the
local vector current de�ned on the lattice is not a conserved current at �nite
lattice spacing a, the matching factor is not normalized even in the limit
of degenerate quarks. Although one-loop perturbation theory works sig-
ni�cantly better with tadpole improvement [15], the two-loop contribution
remains signi�cant (�2s � 5%). Last, the systematic error associated with
the large heavy quark mass must be understood. Previous work with Wilson
quarks [7{9], for which the discretization error was as large as O(amQ), could
not address the 1=mQ dependence in a systematic way when mQ�> 1=a.

In this paper we present a lattice QCD calculation of the �B ! Dl��
decay form factor. For the heavy quark we use an improved action [16]
for Wilson fermions, reinterpreted in a way mindful of heavy-quark symme-
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try [17]. Discretization errors proportional to powers of amQ do not exist in
this approach. Instead, discretization errors proportional to powers of a�QCD

remain, although they are intertwined with the 1=mQ expansion. The �rst
extensive application of this approach to heavy-light systems was the calcu-
lation [18, 19] of the heavy-light decay constants, such as fB and fD. There
the lattice spacing dependence was studied from direct calculations at sev-
eral lattice spacings, and very small a dependence was observed. The third
di�culty mentioned above is, thus, no longer a problem.

To obtain better precision on the semi-leptonic form factors, we introduce
ratios of three-point correlation functions. The bulk of statistical uctuations
from the Monte Carlo integration cancels between numerator and denomina-
tor. Furthermore, the ratios are, by construction, identically one in both the
degenerate-mass limit and the heavy-quark-symmetry limit. Consequently,
statistical and all systematic errors, as well as the signal, are proportional
to the deviation from one. The �rst and second di�culties given above are,
thus, also essentially cured.

The ratio of correlation functions for the calculation of h+(1) corresponds
to the ratio of matrix elements

hDj�c0bj �Bih �Bj�b0cjDi
hDj�c0cjDih �Bj�b0bj �Bi = jh+(1)j2; (1)

in which all external states are at rest. The denominator may be considered
as a normalization condition of the heavy-to-heavy vector current, since the
vector current �q�q with degenerate quark masses is conserved in the con-
tinuum limit, and its matrix element is, therefore, normalized. As a result
the perturbative matching between the lattice and continuum currents gives
only a small correction to jh+(1)j.

For the calculation of h�(w) we de�ne another ratio, corresponding to
matrix elements

hDj�cibj �Bi
hDj�c0bj �Bi

hDj�c0cjDi
hDj�cicjDi = 1� h�(w)

h+(w)
; (2)

where equality holds when the �nal-state D meson has small spatial mo-
mentum. By construction, the ratio produces a value of h� that vanishes
when the b quark has the same mass as the c quark, as required by current
conservation.

This method does not work as it stands for the �B ! D�l�� decay form
factors. The axial vector current mediates this decay, and it is neither con-
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served nor normalized. We will deal separately with this case in another
paper.

This paper is organized as follows. Sec. 2 contains a general discussion
of form factors for the exclusive decay �B ! Dl��. Secs. 3 and 4 discuss
heavy quark e�ective theory and the 1=mQ expansion in the continuum and
with the lattice action used here. Sec. 5 contains details of the numerical
calculations. Secs. 6{9 present our results. Secs. 6 and 7 discuss the form
factor h+ and its mass dependence. Secs. 8 and 9 do likewise for h�. We
compare the results from the �ts of the mass dependence to corresponding
results from QCD sum rules in Sec. 10. The values of h+(1) and h�(1) at
the physical quark masses are combined in Sec. 11 into a result for the form
factor FB!D(1), which with experimental data determines jVcbj. We give our
conclusions in Sec. 12.

2 �B ! Dl�� form factors

The decay amplitude for �B ! Dl�� is parametrized with two form factors
h+(w) and h�(w) as

hD(p0)jV�j �B(p)i = p
mBmD

h
hB!D
+ (w)(v + v0)� + hB!D

� (w)(v � v0)�
i
; (3)

where v and v0 are the velocities of the B and D mesons, respectively, and
w = v � v0. The square of the momentum transferred to the leptons is then
q2 = m2

B+m
2
D�2mBmDw. We denote by the symbol V� the physical vector

current, to distinguish it from currents in the heavy quark e�ective theory
(HQET) and in the lattice theory.

The di�erential decay rate reads

d�( �B ! Dl��)

dw
=

G2
F

48�3
(mB +mD)

2m3
D(w

2 � 1)3=2jVcbj2jFB!D(w)j2; (4)

with

FB!D(w) = hB!D
+ (w) � mB �mD

mB +mD
hB!D
� (w): (5)

At zero recoil (v0 = v, so w = 1) one expects FB!D(1) to be close to one,
because of heavy quark symmetry. From (4) a determination of jVcbj consists
of the following three steps: measure jVcbjjFB!D(w)j in an experiment, ex-
trapolate it to the zero-recoil limit assuming some functional form, and use
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the theoretical input of FB!D(1). In this paper we report on a new calcula-
tion of FB!D(1) with lattice QCD, which is model-independent, at least in
principle.1

An obvious disadvantage in using �B ! Dl�� decay mode is that the
branching fraction is much smaller than the �B ! D�l�� mode. Another, but
not less important, shortcoming is that the phase-space suppression factor
(w2� 1)3=2 makes the extrapolation of the experimental data to w = 1 more
di�cult than for �B ! D�l��, where the corresponding factor is (w2 � 1)1=2.
Nevertheless, the experimental result of the CLEO collaboration [20] shows
that the above method certainly works, even with the current statistics.
That means that the future improvement of statistics will allow a much
better determination of jVcbj, providing an important cross check against
other methods.

3 HQET and the 1=mQ expansion

Many important theoretical results have been obtained for the form factors
with HQET. The Lagrangian of HQET uses �elds of in�nitely heavy quarks,
so that the heavy quark symmetries are manifest. E�ects of �nite quark mass
are included through the 1=mQ expansion and through radiative corrections.
For example, at zero recoil the form factor h+ is given by

h+(1) = �V

"
1� c

(2)
+

�
1

mc
� 1

mb

�2
+O(m�3

Q )

#
; (6)

where �V represents a matching factor relating the vector current in (3) to
the current in HQET [21]. The absence of the O(1=mQ) term in (6) is a
result of a symmetry under an interchange of initial and �nal states in (3),
and it is known as a part of Luke's theorem [6]. The same symmetry also
restricts the form of the O(1=m2

Q) terms.

The matching factor, de�ned so that the identity V0 = �V V
HQET
0 holds

for matrix elements, is an ultraviolet- and infrared-�nite function of mc=mb.
Through one-loop perturbation theory

�V cb = 1 + 3CF
�s
4�

�
mb +mc

mb �mc
ln
mb

mc
� 2

�
: (7)

1Our calculations are done in the quenched approximation, for example, but this is a
removable uncertainty and not a permanent limitation of the method.
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The two-loop coe�cient is also available [22].
The vector current de�ned with lattice fermion �elds has properties sim-

ilar to V HQET
0 . There is a normalization factor ZV0 de�ned so that V0 =

ZV0V
lat
0 holds for matrix elements. The factor ZV0 depends strongly on the

(lattice) quark masses amc and amb [17], and its one-loop corrections are
large. In the past, such uncertainties in the normalization prevented a calcu-
lation of hB!D

+ (1) with the sought-after accuracy. One can, however, capture
most of the normalization nonperturbatively by writing, with explicit avor
indices,

ZV cb
0

=
q
ZV cc

0
ZV bb

0

�V cb
0

: (8)

In our ratio (1) the avor-diagonal factors cancel, so our method avoids the
major normalization uncertainties.

The remaining radiative correction �V cb
0

depends on the ratio of quark
masses and the lattice spacing. In the continuum limit, amc ! 0 and amb !
0 with a and mc=mb �xed,

�V0 ! 1; (9)

by construction. In the static limit, amc ! 1 and amb ! 1 with mc=mb

�xed,
�V0 ! �V ; (10)

because the lattice theory strictly obeys heavy-quark symmetries. In numer-
ical work one is somewhere in between, but the limits imply that �V0 is never
far from unity. Two of us have computed �V0 at one loop in perturbation
theory [23], verifying explicitly that the radiative correction is small.

Similarly, the ratio (2) is described by the expansion

1� h�(1)

h+(1)
= 1 � �V + c

(1)
�

�
1

mc
� 1

mb

�
� c

(2)
�

 
1

m2
c

� 1

m2
b

!
+O(m�3

Q ); (11)

where �V denotes a Wilson coe�cient from matching the currents in (2) to
the HQET. Like �V , it is an ultraviolet- and infrared-�nite function ofmc=mb,
and

�V cb = 2CF
�s
4�

 
2mbmc

(mb �mc)2
ln
mb

mc
� mb +mc

mb �mc

!
(12)

at leading order.
The ratio (2) again captures nonperturbatively most of the renormaliza-

tion of the lattice currents, apart from a factor �V cb
i

to compensate for the
di�erence between the radiative corrections with a �xed lattice cuto� and
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with no ultraviolet cuto�. In the continuum limit �Vi ! 1, and in the static
limit �Vi ! 1 � �V . Again, explicit calculation veri�es that the one loop
contribution remains small between the limits.

In the rest of this paper, we do not write the matching factors �V� when
there is no risk of confusion. In the �nal result, on the other hand, they are
included.

4 Lattice QCD and heavy quark symmetry

In Ref. [17], it was shown that the usual action for light quarks [16] can be
analyzed in terms of the operators of HQET. Therefore, it can be used as the
basis of a systematic treatment of heavy quarks on the lattice, even when
the quark mass in lattice units, amQ, is not especially small. The key is to
adjust the couplings in the lattice action so that operators are normalized
as they are in HQET. When amQ < 1, as is the case for charmed quarks
at the smaller lattice spacings in common use, this is essentially automatic,
because the higher order terms of the heavy quark expansion come from the
Dirac term of the lattice action, as in continuum QCD. When amQ > 1, as
is the case for bottom quarks, one can apply the formalism of HQET to the
lattice theory to obtain the normalization conditions, as sketched below. In
either case, the kinetic energy is normalized nonperturbatively by tuning the
quark mass according to some physical condition. Other operators are often
normalized perturbatively as an initial approximation but ultimately may be
normalized nonperturbatively.

In most of numerical calculations presented here, we use an action intro-
duced by Sheikholeslami and Wohlert [16],

S =
X
x;f

� f
x 

f
x �

X
x;y;f

�f � 
f
xMxy 

f
y +

i

2
cSW

X
x;f

�f � 
f
x���F�� 

f
x ; (13)

where the index f runs over heavy and light avors. The hopping parame-
ter �f is related to the bare quark mass,

am0f =
1

2�f
� 1

2�crit
; (14)

where �crit is the value of � needed to make a quark massless. The avor-
independent matrixMxy vanishes except when y = x��̂a, for some spacetime
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direction �. The kinetic energy arises from this term. The gluons' �eld
strength F�� is de�ned on a set of paths shaped liked a four-leaf clover, so S
is often called the \clover" action. With cSW = 0 one has the Wilson action.

For the light quark the clover coupling cSW can be chosen so that there
are lattice artifacts of order a2�2

QCD. In our numerical work we take an
approximation to the optimal value, leaving an artifact of order �sa�QCD.

For heavy quarks, the clover action (13) has the same heavy-quark spin
and avor symmetries as continuum QCD, even at nonzero lattice spacing.
Consequently, we can use the machinery of HQET to characterize the lattice
theory. The same operators as in continuumQCD appear, but the coe�cients
can di�er. Through �rst order in 1=mQ there are three operators in the heavy
quark e�ective Hamiltonian,

H = m1
�hh�

�hD2h

2m2
� i

�h� �Bh
2mB

+ � � � ; (15)

where h is a heavy quark �eld, and the coe�cients m1, 1=m2, and 1=mB

depend on the bare mass and the gauge coupling. Because the lattice breaks
relativistic invariance the three \masses" are not necessarily equal, except as
am0 ! 0.

At tree level, the rest mass am1 = log(1+ am0), and the (inverse) kinetic
mass

1

am2
=

2

am0(2 + am0)
+

1

1 + am0
: (16)

The �rst term can be traced to the Dirac term of the lattice action, and the
second to the Wilson term. The one-loop corrections to am1 and am2 are
also available [24]. The chromomagnetic mass mB is considered below.

In the heavy quark e�ective theory, the rest mass term m1
�hh commutes

with the rest of the Hamiltonian and, thus, decouples from the dynamics.
As with decay constants [25], one can derive the expansions like (6) and (11)
within the lattice theory, and the rest mass disappears from physical ampli-
tudes. On the other hand, adjusting the bare quark mass so that m2 = mQ

is the way to normalize the kinetic operator �hD2h=2m2 correctly. This nor-
malization can be implemented nonperturbatively, by demanding that the
energy of a hadron have the correct momentum dependence. In our numer-
ical work we use the B and D mesons for this purpose. Furthermore, one
can correctly normalize the chromomagnetic operator �h� �Bh=2mB by ad-
justing the clover coupling cSW, as a function of the gauge coupling, so that
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mB = m2. For example, at tree level the desired adjustment is cSW = 1.
In our numerical work, we choose cSW in a way that sums up tadpole dia-
grams, which dominate perturbation theory. This amounts to normalizing
the chromomagnetic operator perturbatively.

In summary, we adjust the bare mass am0 and clover coupling cSW so
that the leading e�ects of the heavy-quark expansion are correctly accounted
for [17]. Previous work in the literature chose instead to adjust the bare mass
until m1 = mQ, which introduces an unnecessarily large error,2 proportional
to 1�m1(m0)=m2(m0).

Under renormalization the heavy quark kinetic energy can mix with the
rest mass term in a power divergent way. Because the lattice action used here
contains both, the rest mass fully absorbs the power divergence. A related
problem is the ambiguity owing to renormalons [26], which appears in some
quantities in HQET or NRQCD. It is irrelevant to our work, because we
calculate physical quantities, namely the masses of the B and D mesons and
decay amplitude for �B ! Dl��.

To complete the correspondence of the lattice theory to HQET we must
consider the vector current. At order 1=mQ of HQET

V cb
� =

�
�hc +D�hc � 

2m3c

�
�

 
1 �  �D

2m3b

!
hb; (17)

where the coe�cient 1=m3 depends on the current employed. The heavy-
heavy current on the lattice is constructed by de�ning a rotated �eld [17,25],

	f =
q
2�f

h
1 + adf1(am0f; g

2
0) �D

i
 f ; (18)

where  is the quark �eld in the hopping-parameter form of the action (13).
Then the lattice vector current

V cb
� = �	c�	

b (19)

and Vcb
� = ZV cb

�
V cb
� . Both ZV fg

�
and df1 depend on the gauge coupling, the

masses, and (at higher orders) on the Dirac matrix in (17). They are ad-
justed so that the normalization and momentum dependence of matrix ele-
ments matches the continuum, respectively. In particular, at tree level the

2To mitigate this error, these calculations are often carried out at arti�cially small
quark masses. Ensuing extrapolations to larger masses contaminate lower orders in the
(physical) 1=mQ expansion with higher orders.
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coe�cient in (17) is

1

m3
=

2(1 + am0)

am0(2 + am0)
� 2d1; (20)

and the condition m3 = m2 prescribes a condition on d1 [17,25].
In (6) and (11) or, equivalently, in (15) and (17), we seek contributions of

order 1=m2
Q. Because the bottom quark is so heavy, these are dominated by

the 1=m2
c terms. In practice, amc is not large, so they come automatically

from the Dirac term, as in continuum QCD. In future work, at smaller lattice
spacings, the Dirac term will dominate even more, generating contributions
to all orders in 1=mc.

5 Lattice details

Our numerical data are obtained in the quenched approximation on a 123�24
lattice with the plaquette gluon action at � = 6=g20 = 5:7. We take a mean-
�eld-improved [15] value of the clover coupling, which on this lattice is cSW =
1:57. Out of 300 con�gurations generated for our previous work [18], we use
200 con�gurations. We usually de�ne the inverse lattice spacing through
the charmonium 1S{1P splitting, �nding a�1(1S{1P) = 1:16+3�3 GeV. For
comparison, with the kaon decay constant a�1(fK) = 1:01+2�1 GeV, and the
di�erence is thought to be part of the error of quenching. Because the form
factors are dimensionless, the lattice spacing a�ects them only indirectly,
through the adjustment of the quark masses.

To investigate the heavy quark mass dependence of the form factors we
take �h = 0:062, 0.089, 0.100, 0.110, 0.119 and 0.125, and consider several
combinations for the heavy quarks in the initial and �nal states. The mass
of the spectator light quark is usually taken to be close to that of the strange
quark, for which �l = 0:1405. We examine the e�ect of chiral extrapolation
using four �l values, 0.1405, 0.1410, 0.1415, and 0.1419, for various combi-
nations of the initial and �nal heavy quark masses �h = 0:089, 0.110, and
0.119. The critical hopping parameter is �crit = 0:14327+5�3.

For the computation of the matrix element3 hD(p0)jV�jB(p)i we calculate
3For simplicity we use \B" instead of \ �B" to indicate the (b�q) meson, and we use the

names \B" or \D" for any values of the heavy quark masses.
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the three point correlation function

CDV�B(t;p0;p) =
X
y;x

e�i(p�p
0)�ye�ip�xhD(t = 0;0)V�(t;y)B

y(t = T=2;x)i
(21)

with V� from (19) and p = 0. The light quark propagator is solved with
a source at time slice t = 0, and we place the interpolating �eld for B at
t = T=2, where we use the source method. The interpolating �elds B and D
are constructed with the 1S state smeared source as in Ref. [18]. The spatial
momentump0 carried by the �nal state is taken to be (0,0,0), (1,0,0), (1,1,0),
(1,1,1) and (2,0,0) in units of 2�=L, where L is the physical size of the box;
in our case, L = 12a.

The numerical results presented below are obtained from uncorrelated �ts
to ratios of these three-point functions. The statistical errors are estimated
with the jackknife method. For a subset of the data we have repeated the
analysis with correlated �ts and the bootstrap method. We �nd no statisti-
cally signi�cant di�erence.

In our numerical work we usually set the coe�cients d1 of the rotation (18)
to zero. From the discussion following (17) the dependence on d1 enters
directly through 1=m3, and indirectly by changing �Vi. On the scattering
matrix elements of the spatial current Vi, this should make a small (�< 10%
or so) e�ect. On the temporal current V0, the e�ect should be tiny. These
expectations are checked at representative choices of the heavy quark masses,
and the uncertainty introduced into the spatial current is propagated to the
�nal result.

6 Calculation of jh+(1)j

The form factor jh+(w)j at zero recoil is obtained directly from the three-
point correlation functions (21), setting all three momentum to be zero. We
de�ne a ratio4

RB!D(t) � CDV0B(t;0;0)CBV0D(T=2 � t;0;0)

CDV0D(t;0;0)CBV0B(T=2 � t;0;0)
; (22)

in which the exponential dependence on t associated with the ground state
masses cancels between the numerator and denominator. When the current

4Mandula and Ogilvie [10] used a similar ratio, with nonzero velocity transfer, to study
the w dependence of the Isgur-Wise function, which is the in�nite mass limit of h+(w).
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Figure 1: RB!D(t) as a function of t. The heavy quark hopping parameter
for the initial and �nal mesons are (�b; �c) = (0:089; 0:110) (diamonds), and
(0:089; 0:119) (circles). The light quark corresponds to the strange quark,
�l = 0:1405. The solid lines represent a constant �t with 4 � t � 8.

and two interpolating �elds are separated far enough from each other, the
contribution of the ground state dominates and

RB!D(t) ! hD(0)jV0jB(0)ihB(0)jV0jD(0)i
hD(0)jV0jD(0)ihB(0)jV0jB(0)i

=
jhB!D

+ (1)hD!B
+ (1)j

jhD!D
+ (1)hB!B

+ (1)j = jhB!D
+ (1)j2; (23)

suppressing radiative corrections. Here we use the de�nition (3) and the unit
normalization of jh+(1)j in the equal mass case. Thus, we expect RB!D to be
constant as a function of t, and its value represents the form factor squared.

In Fig. 1 we plot the ratio RB!D(t) for two representative combinations
of mass parameters. We observe a nice plateau extending over about �ve
time slices, and our �t over the interval 4 � t � 8 is shown by the solid line.
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Figure 2: Check of the plateau in RB!D(t) by varying the time slice tB of
the B meson interpolating �eld. Open diamonds, crosses and �lled diamonds
correspond to the results with tB = 12, 10, and 8, respectively. The heavy
quark hopping parameters are (�b; �c) = (0:089; 0:110), and �l = 0:1405.

To see if the plateau is stable under the change of the position of the
interpolating �eld, we repeat the calculation changing the time tB of the B-
meson interpolating �eld. The results with tB = 10 and 8 are shown in Fig. 2
together with the one with tB = T=2 = 12. We observe that the plateau is
very stable and conclude that the extraction of the ground state is reliable.
In the following analysis we use the result with tB = T=2, and the numerical
data for each �h are given in Table 1.

We examine the chiral limit by computing with four values of the light
quark mass (14), roughly in the range ms=2 � mq � ms. Figure 3 shows
that the amq dependence of jh+(1)j2, for two combinations of (�b; �c), is very
slight. A linear �t in amq gives a slope consistent with zero, and the value
in the chiral limit is still consistent with that at the �nite light quark mass.
With our present statistics, we cannot study the dependence on the light and
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Table 1: Numerical data for RB!D, which corresponds to jh+(1)j2, at �l =
0:1405. Rows (columns) are labeled by the value of �h in the initial (�nal)
state. Combinations without data were not calculated in this work. The
diagonal elements are one by construction.

�h 0.062 0.089 0.100 0.110 0.119 0.125
0.062 1 0.989(07) 0.979(12) 0.947(24)
0.089 0.989(07) 1 0.998(01) 0.993(02) 0.986(05) 0.983(07)
0.100 0.979(12) 0.998(01) 1 0.992(04)
0.110 0.993(02) 1 0.999(01)
0.119 0.986(05) 0.999(01) 1
0.125 0.947(24) 0.983(07) 0.992(04) 1

heavy quark masses simultaneously. Instead we take from Fig. 3 two lessons:
the dependence on the light quark mass is insigni�cant, but the (statistical)
uncertainty increases, by a factor of two, in the chiral limit.

A small, but non-analytic, dependence on m� is expected from chiral
perturbation theory [27, 28]. Such e�ects may be di�erent in the quenched
approximation. If so, the di�erence should be counted as part of the error of
the quenched approximation.

7 Heavy quark mass dependence of jh+(1)j

In the heavy quark limit of QCD, the heavy quark mass dependence of jh+(1)j
can be described with a 1=mQ expansion. Using a symmetry of its de�ni-
tion (3) under the exchange of the initial and �nal states and the normaliza-
tion in the limit of degenerate heavy quark mass, the form of the 1=mb and
1=mc expansion is restricted to be

jh+(1)j = 1� c
(2)
+

�
1

mc
� 1

mb

�2
+ c

(3)
+

�
1

mc
+

1

mb

��
1

mc
� 1

mb

�2
+O(1=m4

Q);

(24)
suppressing the radiative correction �V . The term O(1=m4

Q) denotes all pos-
sible combinations of 1=mc and 1=mb with total mass dimension�4. The ab-
sence of terms of order 1=mQ is implied by Luke's theorem [6], but in this par-
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Figure 3: Chiral extrapolation of jh+(1)j2. The heavy quark hopping param-
eter for the initial and �nal mesons are (�b; �c) = (0:089; 0:110) (diamonds),
and (0:089; 0:119) (circles).

ticular case it can be understood as a result of the symmetry 1=mc $ 1=mb.
If we take the radiative corrections into account, the data presented in

the last section correspond to jh+(1)j=�V0 . To use the right-hand side of (24),
on the other hand, we must multiply them with �V0=�V to obtain jh+(1)j=�V .
At � = 5:7 and our choices of quark masses we �nd, at one loop, that �V0=�V
is very nearly one, so that we do not need to carry out this conversion.5

To adjust the heavy quark masses, it is necessary to use the kinetic mass,
as explained in Sec. 5. In this paper we are satis�ed to estimate the ki-
netic quark mass by applying tadpole improvement [15], with the mean link
variable u0 = 1=8�crit, to include the dominant tadpole contribution to the
perturbation series. The tadpole-improved kinetic mass is given by substi-
tuting a ~m0 = am0=u0 for am0 on the right-hand side of (16). We do not

5This is an accident at our choice of lattice spacing. For smaller lattice spacings, this
would not be so. See Ref. [23] for details.
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Figure 4: 1=amc dependence of jh+(1)j. The initial heavy quark mass is
�xed at �b = 0:089, which corresponds to 1=amb = 0:475. The light quark
corresponds to the strange quark, �l = 0:1405.

bother with the one-loop correction to m2 [24], because it is smaller than the
uncertainty from a.

We study the relation (24) with several combinations of the initial and
�nal heavy quark masses. Figure 4 shows the 1=amc dependence of jh+(1)j.
The initial heavy quark mass is set to be 1=amb = 0:475 (�b = 0:089),
and we vary 1=amc between 0:2 and 2:0. (Here we misuse the meaning of
subscript b or c to indicate the initial or �nal state heavy quark, respectively.)
At 1=amc = 1=amb the form factor becomes exactly one by construction,
and the deviation from unity increases as 1=amc moves away from 1=amb.
The statistical error grows as the di�erence of heavy quark masses increases.
When one approaches the static limit the signal becomes much noisier, as in
many other Monte Carlo calculations with heavy-light mesons. In our case,
the statistical error of the point with heaviest amc is very large.
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Figure 5: (1 � jh+(1)j)=�2 vs. 1=amc + 1=amb. The dotted vertical line
indicates the physical value of 1=amc + 1=amb. The light quark corresponds
to the strange quark, �l = 0:1405.

To see the mass dependence more clearly, we rewrite the relation (24) as

1 � jh+(1)j
�2

= c
(2)
+ � c

(3)
+

�
1

amc
+

1

amb

�
; (25)

where � = 1=amc � 1=amb. The left-hand side is plotted in Fig. 5. The
data exhibit a very good linear dependence on �, except in the heavy mass
regime, where the error grows rapidly. Fitting all data linearly, we obtain
c
(2)
+ = 0:029(11) and c

(3)
+ = 0:011(4). In physical units, and absorbing factors

of a into the coe�cients, these coe�cients have a size typical of the QCD
scale: c(2)+ = [0:20(4) GeV]2 and c(3)+ = [0:26(3) GeV]3.

The dotted line marking the physical value of 1=amc+1=amb shows that
we are, in e�ect, using (25) as an Ansatz for interpolation. Although the
coe�cients are interesting in their own right, we caution the reader that the
values extracted from the �t are highly correlated, and we have not made a
full analysis of the errors on them. Below we prefer to give h+(1), evaluated
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at physical values of the masses, as the principal result of this section.

8 Calculation of h�(1)

To obtain h�(w), it is necessary to consider nonzero recoil momentum. From
the de�nition of the form factors (3), the matrix elements of the spatial and
temporal vector current for the nonzero recoil �nal state D(p0) read

hD(p0)jVijB(0)i = p
mBmD

h
hB!D
+ (w)� hB!D

� (w)
i
v0i; (26)

hD(p0)jV0jB(0)i = p
mBmD

h
hB!D
+ (w)(1 + w) + hB!D

� (w)(1 � w)
i
; (27)

where w = v � v0 = p
1 + v02, and v0 = p0=mD.

On the lattice we start by computing the ratio of correlation functions

RB!D
Vi=V0

(t;p0) � CDViB(t;p0;0)

CDV0B(t;p0;0)
: (28)

In the limit of well-separated currents, the time dependence attens,

RB!D
Vi=V0

(t;p0) ! hD(p0)jVijB(0)i
hD(p0)jV0jB(0)i (29)

=
v0i
2

"
1 � hB!D

� (w)

hB!D
+ (w)

# "
1 � 1

2

 
1� hB!D

� (w)

hB!D
+ (w)

!
(w � 1)

#
:

The last step holds for small v02 and suppresses radiative corrections. Because
the velocity inherits statistical uncertainties from the D's kinetic mass, it is
further useful to de�ne a double ratio

R
(B!D)=(D!D)
Vi=V0

(t;p0) � RB!D
Vi=V0

(t;p0)=RD!D
Vi=V0

(t;p0): (30)

Then, for large time separations,

R
(B!D)=(D!D)
Vi=V0

(t;p0) ! hD(p0)jVijB(0)i
hD(p0)jV0jB(0)i

hD(p0)jV0jD(0)i
hD(p0)jVijD(0)i (31)

=

"
1 � hB!D

� (w)

hB!D
+ (w)

# "
1 +

hB!D
� (w)

2hB!D
+ (w)

(w � 1)

#
:

The �nal expression is simpli�ed using the property hD!D
� (w) = 0. Provided

that jhB!D
+ (w)j is obtained su�ciently precisely in the previous sections, the
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Figure 6: R
(B!D)=(D!D)
Vi=V0

(t) for the �nal state momentum (1; 0; 0) (circles)
and (2; 0; 0) (squares). The heavy quark hopping parameter for the initial and
�nal mesons are (�b; �c) = (0:089; 0:119) (�lled symbols) and (0:119; 0:089)
(open symbols). The light quark corresponds to the strange quark, �l =
0:1405. The solid lines represent a constant �t for the momentum (1; 0; 0)
with 4 � t � 8.

relation (31) can be used to extract hB!D
� (w). The part proportional to w�1

gives only a small contribution, since the coe�cient h�(w)=h+(w) is itself a
small quantity of order (mB �mD)=(mB +mD).

Figure 6 shows the t dependence of the ratio R(B!D)=(D!D)
Vi=V0

(t;p0) for �nal
state momenta Lp0=2� = (1; 0; 0) (circles) and (2; 0; 0) (squares). Filled
symbols represent the b ! c transition, while open symbols correspond to
the reverse c ! b transition. The plateau is reached around t = 4, so that
we can �t in the interval 4 � t � 8, as with jh+(1)j2. The �t results for the
momentum (1; 0; 0) are given by the solid lines.

Up to the small contribution of order w � 1, this ratio gives the combi-
nation 1 � hB!D

� (w)=hB!D
+ (w), in which hB!D

+ (w) is almost equal to one.
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Figure 7: Extrapolation of R(B!D)=(D!D)
Vi=V0

to the zero-recoil limit. The
heavy quark hopping parameter for the initial and �nal mesons are (�b; �c) =
(0:089; 0:119) (�lled circles) and (0:119; 0:089) (open circles). The light quark
corresponds to the strange quark, �l = 0:1405. Note that the lattice spacing a
is held �xed here.

Looking at the �lled symbols in Fig. 6, hB!D
� (w) is roughly �0:1 and is al-

most independent of the �nal state momentum. Since h�(w) changes its sign
under the exchange of initial and �nal states, it is consistent that the open
symbols, which correspond to the transition D ! B, appear below one.

To obtain the value of hB!D
� (w)=hB!D

+ (w) at the zero-recoil limit, we

extrapolate the plateau values of R(B!D)=(D!D)
Vi=V0

for p02 ! 0. The small piece
of order w � 1 vanishes in this limit as well as the possible w dependence of
form factors, so we obtain hB!D

� (1)=hB!D
+ (1) without further approximation.

Figure 7 shows the extrapolation for the same mass values as in Fig. 6. There
is no signi�cant dependence on (ap0)2. Thus, we simply apply a linear form
to �t the data, shown in the �gure. The numerical data in the zero-recoil
limit are given in Table 2.
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Table 2: Numerical data in the zero-recoil limit for R(B!D)=(D!D)
Vi=V0

, which
corresponds to 1� h�(1)=h+(1), at �l = 0:1405. Rows (columns) are labeled
by the value of �h in the initial (�nal) state. Combinations without data were
not calculated in this work. The diagonal elements are one by construction.

�h 0.062 0.089 0.100 0.110 0.119 0.125
0.062 1 1.067(12) 1.093(14) 1.181(21)
0.089 0.892(20) 1 1.033(04) 1.063(08) 1.095(11) 1.121(15)
0.100 0.836(27) 0.963(05) 1 1.092(11)
0.110 0.923(10) 1 1.034(04)
0.119 0.878(15) 0.964(04) 1
0.125 0.636(47) 0.837(20) 0.889(13) 1

The chiral extrapolation of 1 � h�(1)=h+(1) is shown in Fig. 8, for the
combinations (�b; �c) = (0:089; 0:119) and (0:119; 0:089). As in the case of
jh+(1)j2, the dependence on amq is insigni�cant, but the (statistical) uncer-
tainty increases, by a factor of two.

9 Heavy quark mass dependence of h�(1)

As with h+(1), the heavy quark mass dependence of h�(1) can be described,
in the heavy quark limit of QCD, with a 1=mQ expansion. The form of the
heavy quark expansion of hB!D

� (1) is restricted by its anti-symmetry under
the exchange of the initial and �nal states,

h�(1) = �
�
1

mc
� 1

mb

�
3

"
c
(1)
� � c

(2)
�

�
1

mc
+

1

mb

�
2

#
+O(1=m3

Q): (32)

The meaning of the subscripts on the combinations of inverse masses is given
below. The ratio h�(1)=h+(1) obeys the same expansion up to the given
order, since the correction to the h+(1) starts at order 1=m2

Q.
To take radiative corrections into account, we should note that the (lat-

tice) ratio R
(B!D)=(D!D)
Vi=V0

corresponds to [1�h�=h+]=�Vi. The right-hand side
of (32), on the other hand, is justi�ed in HQET when radiative corrections
are ignored. Thus, we should multiply the data of Table 2 by �Vi=(1 � �V ).
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Figure 8: Chiral extrapolation of 1�h�(1)=h+(1). The heavy quark hopping
parameter for the initial and �nal mesons are (�b; �c) = (0:089; 0:119) (�lled
circles) and (0:119; 0:089) (open circles).

We shall not do this for two reasons. First, the one-loop contribution to �Vi
is not yet available, although a calculation is in progress [23]. Second, there
is an indication from an analysis of renormalons that the series for �V con-
verges poorly [29]. With these points in mind, we omit radiative corrections
and employ (32) as an Ansatz for interpolation.

The subscripts on the parentheses in (32) mean that the enclosed masses
should be taken to be m3 or m2, introduced in Sec. 3. The reasoning is
as follows. The contribution to h�(1) of �rst order in 1=mQ comes solely
from the current [6], namely the 1=m3 terms in (17). The second-order
contribution comes solely from the �rst-order contribution iterated with the
1=mQ corrections to the Hamiltonian [31], namely the 1=m2 and 1=mB terms
in (15). We can take mB = m2 because, with the clover action, the di�erence
a�ects the interpolation negligibly. Tracing the 1=mQ expansion in this way,
and making use of the anti-symmetry under the exchange of initial and �nal
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Figure 9: 1=amc dependence of h�(1)=h+(1). The initial heavy quark mass
is �xed at �b = 0:089 (�lled circles), which corresponds to 1=amb = 0:475.
The open circles are obtained by exchanging the initial and �nal states. The
light quark corresponds to the strange quark, �l = 0:1405.

states, leads to the heavy-quark expansion for the lattice data of the form
given in (32).

In Fig. 9 we plot the 1=amc dependence of h�(1)=h+(1). The �lled circles
are obtained by �xing the initial-state quark mass to be 1=amb = 0:475 and
varying the �nal-state mass. The open circles are obtained by �xing the
�nal-state mass and varying the initial-state mass. We can clearly observe
the mass dependence, which makes it possible to extract the value of the
form factor for physical masses.

To extract the coe�cients c(1)� and c(2)� we plot in Fig. 10

R
(B!D)=(D!D)
Vi=V0

� 1

�3
= �h�(1)=h+(1)

�3
= c

(1)
� � c

(2)
�

�
1

amc
+

1

amb

�
2

; (33)

where now �3 = 1=am3c � 1=am3b. Here the �lled symbols represent the
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Figure 10: �[h�(1)=h+(1)]=�3 vs. 1=amc + 1=amb. Filled (open) symbols
represent the \heavier-to-lighter" (\lighter-to-heavier") decay results. The
solid and dashed lines are �tted results to the �lled and open data points,
respectively. The dotted vertical line indicates the physical value of 1=amc+
1=amb. The light quark corresponds to the strange quark, �l = 0:1405.

results from the \heavier-to-lighter" transitions and the open symbols from
\lighter-to-heavier" transitions. The two sets of data are consistent with
each other, except three points appearing well above the other points. These
data involve the heaviest quark mass in our calculation, where the statistical
noise is very large, and reliable �ts become di�cult. The data are well
described by the linear form (33), and our results for its coe�cients extracted

with the \heavier-to-lighter" data are c(1)� = 0:212(31) and c(2)� = 0:054(11).

In physical units, these coe�cients are c
(1)
� = 0:246(37) GeV and c

(2)
� =

(0:27(3) GeV)2.
The data presented in the �gures and in Table 2 are obtained with the

rotation parameter d1 = 0. One expects h� to be sensitive to d1, because d1
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is the coe�cient of an operator of order v, and h� parametrizes a matrix
element of order v. From the discussion in Sec. 4, however, one sees that d1
inuences matrix elements primarily through the massm3. Thus, our method
of �tting compensates for the omitted rotation, provided we reconstitute
the physical value of h�(1) using the physical values of the quark masses
throughout. A bonus of this method is that the radiative correction factor �Vi
will be easier to compute when d1 = 0.

We have checked the inuence of the rotation by repeating the calcula-
tions with d1 set to

~d1 =
1

2 + a ~m0
� 1

2(1 + a ~m0)
; (34)

which is the correctly tuned value at (mean-�eld improved) tree level [17].
The primary e�ect of varying d1 is through 1=m3 and, from (20) and (32),
is proportional to the di�erence dc1 � db1. A secondary e�ect is to modify the
radiative corrections of the lattice currents.

With hopping parameters (�b; �c) = (0:089; 0:119), the di�erence ~dc1 � ~db1
nearly vanishes. Nevertheless, we �nd

R
(B!D)=(D!D)
Vi=V0

( ~d1)�R
(B!D)=(D!D)
Vi=V0

(0) = 0:0089 � 0:0012; (35)

where we use the bootstrap method to obtain a statistical uncertainty that
takes correlations into account. This di�erence must stem almost entirely
from a change in the radiative corrections, because the change in the heavy
quark expansion is, fortuitously, negligible. Thus, it provides an estimate of
the uncertainty from omitting the radiative corrections.

Another check on the magnitude of the radiative corrections comes from
comparing the heavier-to-lighter transition with the lighter-to-heavier. Be-
cause the physical form factor h� is anti-symmetric under interchange of the

initial and �nal states, the incomplete anti-symmetry of R
(B!D)=(D!D)
Vi=V0

� 1,
seen in Table 2, can come only from radiative corrections. Near the physical
region, these discrepancies are 10{20% of h�(1). With these considerations
to guide an estimate, we take the uncertainty in h�(1) owing to unknown
radiative corrections to range from +0:010 to �0:030.

10 Comparison with the QCD sum rules

In the past, the form factors h+(1) and h�(1) have been studied with QCD
sum rules or the non-relativistic quark model. Here we make a comparison
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of our results for c
(2)
+ and c

(1)
� with estimates obtained with those techniques.

From the zero-recoil sum rule, Shifman et al., obtain [5]

F 2
B!D +

X
X

F 2
X = 1� �2� � �2G

4

�
1

mc
� 1

mb

�2
; (36)

where FB!D corresponds to h+(1) and the FX represent contributions of
higher excited states. The hadronic parameters �2� and �2G are estimated
with other sum rules, and recent results are �2� = 0:5(1) GeV2 and �2G =
0:36 GeV2 [3]. The relation (36) gives an upper bound for h+(1)

h+(1) < 1 � �2� � �2G
2

�
1

mc
� 1

mb

�2
; (37)

provided that the contributions F 2
X of higher excited states are strictly posi-

tive. This can be translated as a lower bound for the coe�cient c(2)+

c
(2)
+ >

1

2
(�2� � �2G) = (0:26+0:09�0:12GeV)

2: (38)

Our result c(2)+ = (0:20(4) GeV)2 is lower than the central value but still
consistent within errors.

In [4, 31] the authors used the non-relativistic quark model to estimate

the coe�cient c
(2)
+ . Their results scatter in a range (0:2 � 0:4 GeV2), strongly

depending on the assumed shape of the quark-antiquark wave function and
the value of the valence light quark mass.

The form factor h�(1) has been studied with QCD sum rules [32, 33].
Applying their analysis to the heavy quark expansion (32) one �nds

c
(1)
� =

��

2
[1 + �1 � 2(1 + �2)�(1)] ; (39)

where �� = mB �mb, the �i are radiative corrections, and �(1) represents a
ratio of HQET form factors, at zero recoil. Neglecting radiative corrections,
Neubert [32] �nds �(1) = 1=3 from a QCD sum rule. Taking �� = 0:5 �
0:1 GeV and �1 = �2 = 0, this implies c(1)� = 0:08(2) GeV. With radiative
corrections in the sum rule, Ligeti et al., �nd �(1) = 0:6 � 0:2 [33]. Taking

now �1 = 0:11 and �2 = 0:09 [34], this implies c
(1)
� = �0:05(10) GeV. Our

result is signi�cantly larger than both, but it is di�cult to make a direct
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Table 3: Tree level estimate of the form factors at zero recoil, with statistical
errors only. The light quark corresponds to the strange quark, �l = 0:1405.
The entries for the form factors do not reect radiative corrections.

amb amc h+(1) h�(1) FB!D(1)
4.4 1.1 0.992(3) �0.103(13) 1.041(8)
3.9 1.0 0.991(3) �0.107(14) 1.042(8)
3.4 0.9 0.990(4) �0.112(14) 1.043(8)

comparison. Our lattice calculation contains some of the radiative corrections
automatically, and the remainder has not yet been calculated. When the
lattice one-loop calculation is available, it should be possible to make a direct
comparison. As we mentioned above, it is conceivable that these e�ects
could change c(1)� signi�cantly, without a great e�ect on the value we extract
for h�(1).

11 Result for FB!D(1)

In the previous sections we have investigated the heavy quark mass depen-
dence of h+(1) and h�(1) and obtained the coe�cients in the 1=mQ expan-
sions (24) and (32). To extract the value of FB!D(1) we input the physical
values of mc and mb, which we adjust to give the physical meson masses.
At � = 5:7 these parameters are amc = 1:0(1) and amb = 3:9(5). The
central value is �xed with the D and B meson masses with the lattice spac-
ing a�1(1S{1P), and the error range reects the uncertainty in the lattice
spacing.

The values of physical h+(1) and h�(1) (without the matching factors)
are given in Table 3 for three possible combinations of amb and amc. Since
the systematic errors in amb and in amc are correlated, we consider the
central and two limiting combinations only. The statistical errors on h+(1)
and h�(1) are estimated with the jackknife method, so that the resulting
precision is better than that obtained by adding in quadrature the errors
on coe�cients c(n)� . In the physical amplitude FB!D(1), which is the linear
combination of h+(1) and h�(1) given in (5), the uncertainty from adjusting
the quark masses largely cancels, and the value of FB!D(1) is very stable.

To obtain the physical result, we must now fold in the radiative correc-
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tion �V0, relating the lattice current to the continuum. Two of us recently
have calculated this factor to one loop [23], and at amb = 3:9 and amc = 1:0
they �nd �V0 = 1+0:096�s. The Lepage-Mackenzie scale q� for the coupling
�s(q

�) [15] has also been calculated, and at the same quark masses the result
is q� = 4:4=a. At � = 5:7, �V (4:4=a) = 0:168 and the correction to h+(1)
is +0:016(3), taking the error of omitting higher orders to be 20% of the
one-loop correction.

The similar one-loop calculation for �Vi, which modi�es h�(1), is not yet
available. We allow, therefore, a systematic uncertainty for this e�ect.

Our results for the form factors are

h+(1) = +1:007 � 0:006 � 0:002 � 0:003; (40)

h�(1) = �0:107 � 0:028 � 0:004+0:010�0:030; (41)

where the error estimates are as follows. The �rst error comes from statistics,
after the chiral extrapolation; the second from adjusting the heavy quark
masses; and the third error from unknown radiative corrections, two loops
and higher for h+ and one loop and higher for h�. The chiral extrapolations,
which are shown in Figs. 3 and 8, double the statistical errors of Table 3,
without changing the central values.

Our main result is the value of the form factor entering the decay rate,
at zero recoil. Inserting the physical values of the B and D meson masses
and the results (40) and (41) into (5),

FB!D(1) = 1:058 � 0:016 � 0:003+0:014�0:005; (42)

where errors are from statistics, heavy quark masses, and omitted radiative
corrections.

Two sources of uncertainty have yet to be investigated carefully. They
are the dependence on the lattice spacing and the e�ects of the quenched
approximation. From our experience with fB [18, 19], we might suppose
that these e�ects are a few per cent and � 15%, respectively. The ratios
have been constructed so that all sources of error, including these, vanish
for equal heavy quark masses. It is, therefore, our expectation that these
percentages apply not to F(1) but to F(1) � 1. That means that these two
sources of error should be under good control, just as we have found with
the other sources of uncertainty.
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12 Conclusions

In this paper we have shown that precise lattice calculations of the zero-recoil
form factors h+(1) and h�(1) are possible. The principal technical advance is
to consider ratios of matrix elements, in which a large cancellation of statis-
tical and systematic errors takes place. The numerical data are interpreted
in a way mindful of heavy quark symmetry [17]. We �nd, therefore, that the
dependence of the form factors on the heavy quark mass is well described by
1=mQ expansions, and we obtain the coe�cients in the expansions.

Our control over the heavy quark mass dependence allows us to deter-
mine the individual form factors h+(1) and h�(1), as well as the physical
combination FB!D(1). The main results (40){(42) account for most uncer-
tainties, but not the dependence on the lattice spacing or the e�ect of the
quenched approximation. Since our method is designed to yield the devi-
ation of FB!D(1) from one, we do not expect these qualitatively to spoil
the quoted precision. With the proof of principle provided by this work, it
should be possible, in the short term, to obtain FB!D(1) with control over
all sources of uncertainty and an error bar that is small enough to be relevant
to the determination of jVcbj.
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